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Introduction

• Physics is based on experimental measurements

• Must understand precision and accuracy of these
measurements

• Must also determine whether data is consistent with our
theory and whether new physics could be hiding in the data

Statistics provides the tools to do this



How particle physicists analyze data
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Probability: Basic Definitions and Axioms

• Probability P is a real-valued function defined by axioms:
1. For every subset A in S, P (A) > 0
2. For disjoint subsets (A ∩B = 0), P (A ∪B) = P (A) + P (B)
3. P (S) = 1

• Bayes Theorem:
(Conditional Probability P (A|B) ≡ prob of A given B)

P (A|B) =
P (B|A)P (A)

P (B)

• Law of Total Probability

P (B) =
∑
i

P (B|A)P (Ai)

• Together these give:

P (A|B) =
P (B|A)P (A)∑
i P (B|Ai)P (Ai)



Probability: Random variables and PDFs

• For continuous variable x, probability density function (pdf):
I f(x; θ) ≡ prob that x lies between x and x+ dx
I θ represents one or more parameters

Won’t always carry θ along

• Cumulative probability

F (a) =

∫ a

−∞
f(x)dx

Probability that x < a.

• For discrete variables, replace integral with sum

• For any function u(x), expectation value:

E[u(x)] ≡ 〈u(x)〉 =
∫ ∞
−∞

u(x)f(x)dx



PDF Moments: Mean and Variance

• Mean value:

µ ≡
∫ ∞
−∞

xf(x)dx

• Variance:

σ2 ≡ V ar(x) =
∫ ∞
−∞

x2f(x)dx− µ2

σ is called the “standard deviation.”

These basic definitions are used essentially
everywhere. If we know the pdf, we know

how to determine the mean and σ



Binomial Distribution [Discrete]

• Random process with two possible outcomes

• p =Prob of outcome #1, q = 1− p =Prob of outcome #2

• In n trials prob of getting outcome #1 exactly k times is

f(k;n, p) =
(n
k

)
pkqn−k where

(n
k

)
=

n!

k!(n− k)!

• µ = np; σ2 = npq

Binomial PDF Binomial Cumulative PDF



Poisson Distribution [Discrete]

• Prob of finding exactly k events in the interval between x and
x+ dx if the events occur with an average rate in that
interval of λ.

f(k;λ) =
λke−λ

k!

• µ = λ; σ2 = λ

• For large λ, approaches a Gaussian

Poisson PDF Poisson Cumulative PDF



Normal (Gaussian) Distribution [Continuous]

Theorem (Central Limit Theorem)

Given random sample (x1, x2, ...xn) drawn from pdf with mean µ
and variance σ, if mean is S/n = 1/n

∑n
1 xi, distribution of S/n

approaches normal distribution as n→∞ independent of pdf

f(x;µ, σ) =
1

σ
√
2π
e−

(x−µ)2

2σ2

Gaussian PDF Gaussian Cumulative PDF



Exponential Distribution [Continuous]

Number of events lost per unit length proportional to number of
events

f(x;λ) = λe−λx

µ =
1

λ
; σ2 =

1

λ2

Exponential PDF Exponential Cumulative PDF



Statistical Estimators

• One aim of statistical analysis: estimate true value of one or
more parameters from experimental data and understand the
uncertainty on that measurement

• Important characteristics a good estimator are:
I Consistency: If amount of data large, estimate converges to

true value
• Bias: Difference between expectation value of estimator and

true value of parameter

I Robustness: Estimator doesn’t change much if true pdf differs
from assumed pdf (eg tails in distributions)

• We also want to know the uncertainty on our estimate (how
far might the true parameter be from our estimate due to
statistical fluctuations in the ensemble of measurements)



Likelihood Function

• Likelihood L(x; θ) is probability that a measurement of x will
yield a specific value for a given theory

I To determine likelihood, must know both the theory and the
values of any parameters the theory depends on

• If we have an ensemble of measurements, overall likelihood
obtained from product of the likelihoods for the measurements

L(x; θ) =
n∏
i=1

Li

Here θ can represent one or more parameters



Log Likelihood

• To estimate parameter(s) θ, maximize the likelihood

• Usual technique to find maximum, set derivative equal to zero

• Easier to maximize than lnL

∂ lnL
∂θ

=
∂

∂θ
ln

n∏
i=1

Li

=
∂

∂θ

n∑
i=1

lnLi

= 0

• If several θi can minimize with respect to each
I We’ll come back to correlations in a few minutes



Poisson example of likelihood

• N independent trials with results ni
• Likelihood function for observing ni if true mean is µ

L(ni;µ) =
e−µ(µ)ni
ni!

Product over N measurements:

L(data;µ) =
N∏
i=1

e−µ(µ)ni

ni!

lnL =
∑
i

(−µ+ ni lnµ− ln(ni!))

= −Nµ+

(∑
i

ni

)
lnµ+ constant

∂lnL
dµ
|µ̂=µ = −N +

∑
i ni

µ
= 0

µ̂ =
1

N

N∑
i=1

ni

As expected, the best estimator is the mean value



Gaussian example of likelihood

G(x|µ, σ) = 1√
2πσ

e
− (x−µ)2

2σ2

• Now take derivative of the log likelihood:

∂

dµ
(lnL) |µ̂=µ =

∂

dµ

(
−
∑
i

(xi − µ)2

2σ2
+ const

)

= −
∑
i

(xi − µ)
σ2

|µ=µ̂ = 0

⇒ µ̂ =
1

N

∑
i

xi

• Warning: The unbiased estimator for σ is

σ̂ =
1

N − 1

∑
i

(xi − µ)2

I won’t bother to prove this!



Binned vs unbinned likelihood functions

• Likelihood formalism works for any well behaved probability density
function

• The product of the likelihood is a product over measurements

• We can define what we mean by a measurement

• Example: Measure the lifetime of particle of a given species from an
ensemble of such particles produced at time t = 0 that decay at
time t:

f(t) =
1

τ
e−t/τ

Two ways to construct a likelihood:

1. For each decay i measure ti and take the product of all
measured times to get L (unbinned likelihood)

2. Make a histogram of the number of decays in bins of time.
Now, the measurement is the number of decays in each bin i
(binned likelihood)

You will have a chance to try this in practice on problem set # 3



Connecting the Log Likelihood to the χ2

• From previous page, for Gaussian case

lnL = −
∑
i

(xi − µ)2

2σ2
+ const

• Compare this to

χ2 ≡
N∑
i=1

(xi − µ)2

σ2

• By inspection, for the case of a Gaussian distribtuion

χ2 = −2 lnL

• Note: The likelihood formulation works for all pdf’s and is
therefore more general!



The Method of Least Squares

• Assume our measurements are made with high enough statistics
that we can assume we are in the Gaussian regime

• We want to find the best estimates of the parameters of function
that describes the data

• Do this by minimizing the scatter of data from fit function, taking
into account uncertainties on data points

• Scatter defined in terms of χ2:

χ2 =
N∑
i=1

(xi − µ)2

σ2

• We can write the χ2 in terms of our observables

χ2 =
N∑
i=1

(yi − F (xi, θ))
2

σ2
i

• Minimize χ2 with respect to θ (or multiple θi)

• Useful in case of high statistics samples where minimizing − lnL
slow



Correlated Variables

• Often variables we fit for are not independent

• When doing minimization, correlations must be taken into account

• Reminder: variance is:

σ2 ≡ V ar(x) =
∫ ∞
−∞

x2f(x)dx− µ2

• Define covariance Cov[x, y] as

cov[x, y] ==

∫ ∞
−∞

xyf(x, y)dxdy − µxµy

• If x and y are uncorrelated, independent variables, then

cov[x, y] = 0 for x 6= y



The covariance matrix (Gaussian example)

• If x and y are independent variables

G(x, y|µx, σx, µy, σy) =
1√
2πσx

e
− (x−µx)2

2σ2x
1√
2πσy

e
− (y−µy)2

2σ2y

∂2

dµ2
x

(lnL) = −
∑
i

1

σ2
x

Second derivative wrt µ proportional to 1
σ2

• Now remove assumption that x and y are uncorrelated

• Covariance matrix defined by〈
V̂ −1

〉
ij

= − ∂
2 lnL

∂µi∂µj

• For binned likelihood in region of large N , where likelihood can be
reduced to a χ2 〈

V̂ −1
〉

=
1

2

∂2χ2

∂µi∂µj



Effect of Correlated Uncertainties

• Standard error ellipse for two parameters with a negative correlation

• Slope related to correlation coefficient dθi/dθj

I The θ parameters here correspond to the µ parameters on the previous

page

• Correlation matrix typically determined from data numerically
during fitting procedure



Propagation of Errors

• Good description found on wikipedia:
http://en.wikipedia.org/wiki/Propagation of uncertainty

• Basic expression is

σ2
f =

(
∂f

∂α

)2

+

(
∂f

∂β

)2

+ 2
∂f

∂α

∂f

∂β
COVαβ

for case where our model has two parameters α and β

• Extension to more dimensions usually expressed as a matrix

• In case of uncorrelated parameters, reduces to the usual expression
you saw in undergrad lab



Confidence Intervals

• Using frequentist language: fraction of result is not between
x` and xu is

1− α =

∫ xu

x`

P (x; θ)dx

Warning: some authors call this α rather than 1− α
• Example for a Gaussian distribution



Confidence Levels for Two Common Distributions
• Gaussian

• Poisson

Here α is fraction outside the region of integration



Introduction to Hypothesis Testing

• So far, everything discussed geared to finding best value of
parameters and uncertainy, under assumption that we know
the pdf

• Nothing in our procedure tells us if data are consistent with
hypothesis

• Need statistical tests of whether hypothesis is true
I Significance tests: How likely is it that signal is just a

fluctuation?
I Goodness of fit tests: Is data consisten with coming from

proposed hypothesis?
I Exclusion tests: How big a signal could be hiding in our data?



Significance Tests

• Suppose we measure a value
t for the data

I How likely is it that we see
a value that is further
from prediction than our
measurement

• Suppose we measure a
distribution of data.

I How consistent is our
distribution with
hypothesis

• Can use our friend χ2

P−value =
∫ ∞
χ2
meas

f(x;nd)dx



Hypothesis Testing: The Likelihood Ratio

• Experiments typically have background in addition to signal

• How do we know if there is a significant signal “on top of”
the background?

• Given two hypotheses HB and HS+B, ratio of likelihoods is a
useful test statistic

λ( ~N) =
L( ~N |HS+B)

L( ~N |HB)


